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Abslract. Using an aspmetric associative network with synchronous updating, it is possible 
to recall a sequence of patfems. To obtain a stable sequence generation with a large storage 
capacity, we introduce a threshold that eliminates the conhibution of weakly correlated patterns. 
For this system we find a set of evolution equations for the overlaps of the states with the 
patterns to be recognized. We solve these equations in the limit of the stationary cycle, and 
obtain the critical value of the capacity as a function of the threshold and temperature. Finally, 
a numerical simulation is made, confirming the theoretical results. 

1. Introduction 

The application of neural networks to time-sequence recognition has a wide range of 
potential applications, from associative memory to speech recognition to the prediction 
and control of complex dynamical systems. Networks with symmetric synapses, such as 
the Hopfield [I]  and Little [Z] models are unable to reproduce complex sequences since they 
minimize an energy function [3,4]. The equilibrium properties of these models have been 
studied analytically by constmcting the partition function associated with the energy. In 
[5 ]  the asynchronous case (the Hopfield model) and the synchronous one (the Little model) 
have been studied far from saturation. That is to say, for 01 = 0 with IY = p / N ,  where p 
is the number of patterns and N is the number of neurons as N goes to infinity. The near 
saturation case (a # 0) was studied by Amit et af for the asynchronous case [6] and by 
Fontanari et a1 for the synchronous one [7] by using replica symmetry techniques. Networks 
with asymmetric synapses are able to reproduce sequences of patterns, however, in general, 
the equilibrium statistical mechanics cannot be applied. Instead of using an energy approach 
Coolen and Ruijgrok [SI started from the master equation for the microscopic states of the 
network and derived an evolution equation for the probability density for the overlaps of 
the states with the patterns in an asynchronous asymmetric network. Using this approach 
other authors have studied asynchronous asymmehic nets far from saturation [9, lo]. The 
synchronous case was also analysed far from saturation by Bernier [ l l] .  

Near saturation networks have been studied recently with success using statistical 
methods based on the central l i t  theorem (UT). In [12] Nishimori and Ozeki investigated 
the relaxation to equilibrium in the Little model [Z] (synchronous dynamics) near saturation 
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using a mean-field treatment and solving the equations by means of the CLT. In the 
equilibrium limit they obtained a good qualitative agreement with the results by Amit 
et al 161. An energy approach and the CLT was used by Shukla [lS] in the Little model 
to obtain a phase diagram that coincided well with the numerical results. In [14] we 
studied a symmetric, asynchronous, state-dependent network with a threshold using a CLT 
method developed by Geszti and Peretto [15] and find that its capacity increases with 9 
(the threshold) as 01 - f'e''2/Z. Moreover, for 9 = 0 we recovered the Hopfield model and 
found the same results as with replica symmetry techniques [6] .  

In this paper, we will consider an asymmetric neural network synchronously updated 
with a state-dependent synapses and calculate its capacity to follow a sequence of patterns. 
For this we first derive the evolution equations for the overlaps using the transition 
probability for the neuron states and a mean-field-type approximation. We then solve 
them by the statistical method of Geszti and Peretto. We will show that this network 
has a maximal storage capacity 01, = p / N  = 0.278 in the case q = 0, which is the limit in 
which the network is state-independent. Beyond this value, the number of weakly correlated 
patterns becomes so large that their contribution dominates over that of the highly correlated 
pattern, w*hich should force the transition to the next state in the sequence, and the system 
diverges from the learned sequence. We will show how the storage capacity increases if one 
limits the contribution of weakly correlated patterns, by taking # 0 only those patterns 
whose correlation with the state of the system is greater than or equal to the threshold are 
left to give a contribution to the synapses. We will give the dynamical phase diagram of 
this network and compute the critical capacity as a function of the temperature and the 
threshold: the learned sequence is stable up to the critical capacity, which increases with 
the threshold. These results are confirmed in the deterministic limit T = 0, with the help 
of a numerical simulation. 

Although biological synapses are likely to be asymmetric, and this fact is probably an 
important factor in the complexity observed in biologjcal neural systems, the application of 
a state-dependent threshold and the use of a central clock for the parallel updating of the 
neurons implies that the results of this paper are not likely to be relevant in the physiological 
domain. On the other hand, the use of synchronous parallel updating allows for an efficient 
use of modem parallel-processing computers. We will discuss possible applications of our 
work to the prediction of chaotic time series in the conclusion. 

In section 2, we review the increase in capacity with the threshold parameter in the 
Hopfield model, as well as the solutions of the mean-field equations for symmetric synapses 
1141. In section 3, we consider the asymmetric rule with a threshold, and parallel updating 
of the neurons; the evolution equations for the overlaps are derived and solved using the 
statistical method developed in [15], and the generalized phase diagram for the stationary 
limit of the dynamics is constructed. In section 4, we give the results of the numerical 
simulation and in secton 5 we give the conclusions. 

2. State-dependent synapses and associative memory 

In [ 141 we considered a network with symmetric state-dependent synapses for associative 
memory tasks. The main idea of this type of synapses is to cut off the contribution of those 
patterns whose correlation is less than a given value (the threshold). A set of N neurons 
with states s; = & I  at timen = 1,2, .. . (i = 1 , . . . , N )  interact through a state-dependent 
synapses matrix W;. The network evolves by updating one neuron at a time in random 
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order through the rule 
1 

1 + eT2W 
s;” = f l  with probability 

where 

588 I 

(1)  

Y 

and where p-’ = T is the temperature parameter. Let [er = f l )  (p = 1 , .  . . , p )  be a set 
of p patterns generated randomly, such that 

((F$tj”)) = J””6ij (3) 
where ((. . .)) denotes the average over the distribution of patterns. The synapses matrix 
was taken to be 

where 

is the correlation of the state sf with the pattern er, and the step function 0 ( x )  ensures 
that the pattern is set to zero if (mp (s”))’ < $ / N .  q is called the threshold and for 
q = 0 Hebb’s rule for the synapses is recovered [3,11]. From (1) and (5) one obtains the 
equation of motion for the instantaneous average activity of the neurons 

where 

with (. . .) denoting the thermal average over the distribution (1). Since m; - m, (s“) N 

O(l / f i )  one can substitute m, (s“) by m; in (6) making an error of 

0 fiProb ( m i )  - - 2 0 ( [ 211NI 1) 
where 01 = p / N  and Prob [x  2 01 is the probability that x be greater or equal to zero. In 
the limit 01 + 0 this substitution is exact, while for 01 # 0 the approximation remains good 
for large values of q since then the probability that a weakly correlated pattern pass the 
threshold becomes small. With this approximation, one obtains the mean-field equations 

A study of these equations by means of the statistical techniques developed in [15] showed 
that the storage capacity 01, = p / N  can be increased up to any preassigned value (for 
N -+ 00) by taking a sufficiently large value of the threshold. Those results were confirmed 
by means of a numerical simulation. 
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3. Sequence recognition with state-dependent synapses 

Let us consider a neural network with N neurons and a time series of q random patterns 
{#'I which obeys (3). We want the network to be capable of following the sequence of 
patterns in order from j~ = 1 to I*. = p ,  where p < q .  The capacity of the network is again 
defined by a = p / N .  The system evolves now in parallel by the transition probability from 
the state s' = (si) to the state s = ( s i )  

where hi is given by (2) and the synapses now have 

The evolution of the probability of the network P, (s) to be in state s at time n is given by 
I l0 , l l I  

pa+] ( 5 )  = (s' -+ s) pn (8') (12) 
8' 

The average overlap at step n + 1 is then 

where 

After substituting (10) and (12) in the expression (13) and then summing over s, one finds 

We can substitute the overlaps in the right-hand side of (15) by its thermal average making 
an error of order given by (8). obtaining 

We are interested in finding solutions of (16) which have a large overlap only with the 
pattern p = n: 

((m;)) = 6;m..  (17) 



Recognition of temporal sequences 5883 

Let us consider in (16) p = v + 1 # n + 1 and expand the term proportional to 
m;@((m;)2 - q 2 / N )  to first order. One finds 

[ 1 - tanh' B (m, + T?")] N 

where 

Because m;, p # n are the sum of a large number of random variables #(s,!') we may 
assume that they have normal distributions centred at zero, with variance u:/N, by the CLT. 
For q # 0, only the patterns which pass the threshold contribute to (19): the distribution 
of m; over the reduced set of patterns is Gaussian for (m;)' > q Z / N  and zero in the strip 
(mi)* < q 2 / N .  We will assume that the number of patterns which pass the threshold is 
large, so that T,?" has a normal distribution also for q # 0, with variance urn and average 
zero (note, however, that the m;, p # n are not strictly independent variables, since they 
are related through the (16)). Then 

urn = (((T~~J)')) (20) 

and 

dz e-"/' tanh2 0 (m. + &z) =Jz 
From equation (18) we get 

Squaring this expression, averaging over the distribution of patterns and using (19), (20) 
and (22) we get for p >> 1 

U:+, - B' (1 - q 2 r n  = qn . (23) 

Another relation can be obtained directly from (19) and (20). giving 

where l- is the incomplete gamma function [161. Now taking the mean-field equations for 
p = n + 1 we obtain, with similar calculations 

mn+l = [ dz -$Iz tanh ,4 (m, + &z) 
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0 , I  0.4 0.8 0 .B  1 
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Figure 1. The increase in he storage capacity of the neural network with the threshold is 
represented. in the deterministic limit T = 0. "be critical capacity with threshold equal to zero 
is ac = 0.278. With a threshold q = I the critical capacity increases to 0.36, and at q = 2 it 
rexhes & = 1.1 

7 = 0.4 

0.2 0.1 0.6 0.8 1 

Cducalcapacltf 

Figure 2. The maximum storage capacity is given as a function of the threshold at T = 0.4. 
For low values of the threshold the capacity is less than in the deterministic w e  T = 0. as 
thermal fluctuations inhibit a clean recall of the sequence. However. the improvement in the 
storage capacity with the threshold is stronger than at zero 1emperaNre. and for thresholds above 
q = 1.15 the capacity of the T = 0.4 nehvork surpasses that of the deterministic network. 

Equations (21), (23), (24) and (25) are simultaneous equations for the unknowns m,, 
qn, U" and r,. We can solve them in the stationary limit in which the order parameters are 
constant in time: m. = m, qn = q, a,, = U and r. = r .  In figure 1, we describe the space 
of solutions at T = 0 for q = 0 there exist solutions for 01 < 0.278, while for 0 # 0 this 
value increases as is shown by the critical line 0 1 ~ ( q ) ;  m # 0. Above this line one has 
temporal sequence solutions of the form (11). while below it m = 0. For q -+ 00, 0 1 ~  -+ 00 
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T = 0.7 

Threshold 
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Figure 3. The storage capacily is given as a function of the threshold at T = 0.7 

as 

In figures 2 and 3 we give the critical capacity as a function of the threshold for finite 
temperatures. 

4. Numerical simulation 

A numerical simulation of a network of N = 144 neurons was carried out (see figure 4). 
The network was initiated near the first pattern in each se& with an error in one of 
the neurons, and allowed to evolve according to the deterministic synchronous evolution 
rule with the synapses (11). The overlap with the last pattern in the sequence was 
determined, and this result was averaged over 200 sets of randomly generated patterns 
and over 25 different choices of the erroneous initial neuron. For low values of the 
threshold the overlap begins to decline sharply at a critical value of the capacity close 
to the theoretical estimate. 2 the decline is smoother and it is difficult 
to determine accurately the critical capacity. Following the first referee’s suggestion, 
we increased N to 1681 neurons, using the ‘trick‘ described by Penna and Oliveira 
[I71 (1681 is the square of 41; the odd number avoids memory drift confficts in the 
vectorized code). The low-q graphs were unchanged, but the new q = 2 graph 
displays a sharp drop near the theoretical critical capacity estimate, namely at cyc c 1.1 
(figure 5). 

The need for a greater number of neurons for large-q simulations reflects the fact that 
the number of patterns which pass the threshold must be large, in order to apply the CLT 
in (16). Since mB has a normal distribution with variance o Z / N  - l / N ,  this number is of 
the order a N ( 1  - erf(p/fi)), where erf() is the error function [16]. For N = 144, p = 2 
and a = 1, an average of only 6.55 patterns pass the threshold, while for N = 1681 this 
number increases to 76.5, enough to invoke the U T .  As this interpretation suggests, there 
should be no need to increase further the number of neurons; this fact was confirmed by a 
run at N = 6561, which reproduced the same graph as figure 5. 

For q 
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0.6 

0.4 

0.2 

0 

Figurc 4. The results of lhe numerical simulation of the network are represented. The average 
overlap with the learned sequence is given as a function of the storage capacity (I = p / N ,  for 
various values of the threshold. A sharp decline in the overlap is detected near the theoretical 
value = 0.28 for 9 = 0. The increase in capacity from q = 0 to q = 1 is roughly equal to 
0.06, again close to Ihe theoretical prediction. For q = 2 the capacity increases substantially: 
one has an accurate recall of the sequence up to c1 = 0.6, and the overlap with the sequence 
goes to zero nenr the theoretical critical value ( I~  = 1.1. 

N = 1681 

(1.06, 0.8) 

eta = 2 
0.1 

0.2 I-.1 0 

0veIt.p 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 
Critical capacity 

Figure 5. The numerical simulation with N = 1681 neumns reveals a critical capacity (I~ sz 1. I .  
in agreement with the theoretical calculation. 

5. Conclusions 

We have proposed a neural network with statedependent synapses and synchronous updating 
capable of storing long sequences of random patterns. In order to achieve this result, we 
introduced a threshold which cuts off the contribution of the weakly correlated patterns. 
The critical storage capacity was computed as a function of the threshold parameter and the 
temperature, and the results for the deterministic case T = 0 were confirmed by numerical 
simulation. 

One of the motivations for this work was the possibility of applying this type of network 
to chaotic time series prediction. There it is necessary to 'teach' the network a large 
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number of patterns, typically of the order of IO4 for a low-dimensional attractor. Since 
the present network is capable of storing such a chaotic time series, it is possible that as a 
dynamical system this network would itself display a chaotic behaviour, with an attractor 
which approximates reasonably well the attractor of the physical system that generated the 
time series. Finally, it may be possible to adjust the value of the threshold so that the first 
Liapunov coefficient of the neural network be equal to that of the time series; this would 
probably give a subcritical value of the threshold, such that the learned sequence is unstable. 
This approach to nonlinear modelling suggests the exciting prospect of designing models 
which come close to topological equivalence with the physical system. 
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